Chapter 15

Markov and Semi-Markov Option Models

15.1. The Janssen-M anca model

In this section, we present a new extension of the fundamental Black and Scholes
(2973) formula in stochastic finance with the introduction of a random economic
and financial environment using Markov processes, which we owe to Janssen and
Manca (1999).

In preceding papers (Janssen, Manca and De Medici (1995), Janssen, Manca and
Di Biase (1997), Janssen, Manca and Di Biase (1998), Janssen and Manca (2000)),
these authors aready show how it is useful to introduce Markov and semi-Markov
theory to finance, with the assumption that the evolution of the asset follows a semi-
Markov process, homogenous or hon-homogenous, and how to price optionsin such
new models. The main idea of this approach is to insert a strong dependence of the
asset evolution as afunction of the preceding value.

The construction of this new model starts from the traditional CRR model with
one period to obtain a new continuous time model satisfying the absence of arbitrage
assumption.

One of the main potential applications of our model concerns the possibility of
obtaining a new way of using the Black and Scholes formula with information
related to the economic and financial environment, particularly concerning the
volatility of the underlying asset.

This new model also provides the possibility to take into account anticipations of
investorsin such away as to incorporate them in their own option pricing.
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In the same philosophy, the model can be used to construct scenarios,
particularly in the case of stressin aVaR approach.

15.1.1. The Markov extension of the one-period CRR model

15.1.1.1. The model

Starting on a complete probability space (Q,S, P) , let us consider a one-period
model for the evolution of one asset having the known value S(0) = S, at time 0 and
random value (1) at time 1.

The economic and financial environment is defined with random variables
Jy,J; representing the environment states respectively at time 0 and time 1. These
random variables take their values in the state space E = {ZL m} and are defined
on the probability space by:

P(Jozi):q,izl...,m;

P(3,3,=1)=p,.i,j =1.um, (15.0)
where

a>0i=1.,m

>a-=1
3 (15.2)

P; >0,i,j=1...,m,

dYpj=Li=l..m
j=1

Furthermore, let us introduce the following function of Jo,J;: u,, . d,
0y, SUch that, as.:

0<d, ; <fy,; <Uy,, (153
dJOJI <1 1< Moy

0<q,, <L (15.9)
The one-period model, related to the process {S(0),S(1)} , is the following:

given J,,J; and that S(0) =S, the asset has the following evolution: it goes up
from §, to u, ; § with the conditional probability ¢, ; or goesdown from §; to
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d, ;S with the conditional probability 1—q; ; ; moreover, the non-risky interest
rate of this period hasthe value v, , defined by:

~1. (15.5)

V‘JO‘JI = r‘]O‘Jl

Given J,,J; , we have:

P(S(l) = uJOJlsb|‘]0' ‘]11 Sb) = q.]o.]l'

P(S(l) = dJOJlsb”‘]o"]l’ S)) =1- Uya, »

E(S(l) ”Jm Ji Sb) =0,5,Us,0, S +1-0,5)d,, S (15.6)
E(SO[30:S) =3 Py (0, U S + A-0,, )0, S

> P(‘Jo =i )i[ By (q” u; + (- a; )dij )]S)

j=1

E(SW|S)=

One of the basic concepts of stochastic finance is the absence of arbitrage
possibility. In fact, it is equivalent to state that the process {rS(0),S()} is a
martingale where r =1+, and p is an adeguate non-risky interest rate for
calculating the present value of 1) at time 0.

Here, we must take into account the possible information of the investor
concerning the environment; at time O, in addition to the knowledge of §,, different
information sets may be available. Three cases are possible:

1) Knowledge of (J,,J; )

In this case, the martingale condition:

E(S(1)||J01‘]1' S)) = rJOJlS) (15.7)
becomes:
rJOJls) = qJOJluJOJlso +(1- qJOJl)dJOJlsb (15.8)

or

N353, = o0, Usps, + - qJOJl)dJOJl' (15.9)
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This last condition is exactly the same as the CRR model; this means that the new
conditional probability for which the martingale condition is satisfied is given by:

r,, —d
Joh e (15.10)

qJOJl =
UJDJ1 Y39,
This value defines the risk neutral conditional probability measure.

As an example of its application in option pricing, et us consider that we want to
study a European call option of maturity T = 1 and exercise price K bought at time 0.

It follows that at time 1 or at the end of the maturity, the value of the option will
be given by the random variable:

C(S(1),0) = max {0,S(1) - K }. (15.11)
We calculate the price of the option at time O with a maturity period of value 1 as

the conditional expectation under the risk neutral conditional probability measure,
denoted C, , (S,1), of the present value of the gain at time 1:

C,,5.(S:D) = E(r;3, max{0,S(1) - K}|35,3; )

(15.12)
=15 [ G, max{0,u,, § ~ K} + (-6, )max{0,d, , § - K} |
2) Knowledge of J,
Let us begin to see what the martingal e condition becomes.
We have:
E(S®[J0,S) = E(E(SW]35,9,, %)%, S )- (15.13)

As the assumption of AOA is now satisfied for the conditioning with J;, and J,,
we can write that

E(SW[30.%)=E(r,5,$90:S ) (15.14)

and so:

E(SW[0.S )= SE (755, [90:S). (15.15)
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and finally:
E(SW].S) =5, (15.16)
where:
DI I (15.17)
=1

These last two formulae show that, given, at time 0, theinitial environment state,
the AOA istill valid with risk neutral interest

P, =1-¢,,; (15.18)

or
m

P, = Z SLENE (15.19)
j=1

with 1, ; given by relation (15.5) which is perfectly coherent as relation (15.19)
represents the conditional mean of the non-risky interest rate given J,,.

3) No environment knowledge

In this last case, the investor merely observes the initial value of the stock S, as
in the CRR or the Black and Scholes models. As above, we can calculate the
expectation of 1) asfollows:

E(S®[S)=E(E(SM[3,)|S,). (15.20)

and from relation (15.16):

E(SO[S)=SE(s,,|S): (15.21)

As, from relation (15.17), we obtain:

S;)-ZZ&-Z Py (15.22)

i=1 j=1

E(gJO
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it follows that the AOA is till true in this case with a non-risky interest rate
p defined by:

p=1- Za. DRy (15.23)

= leq > v, (15.24)

Once more, these last two relations show the perfect coherence concerning the
non-risky interest rates to be used with regard to the three environment information
sets we can have.
15.1.1.2. Calculational option pricing formula for the one-period model

In the preceding section, relation (15.12) givesthe value of acall option at time 0
given theinitia and final environment states J,, and J,. We now calculate the price
of the option, firstly with only the knowledge at time O of the initial environment
state J,, then with only the knowledge of the final state J, and finally with no
knowledge of theinitial and final states:

1) with the knowledge of J,
This value, denoted by C, (S,,1), is nothing other than the conditional
expectation of C, ; (S,,1) given Jg:

C,, (S0 =E(Cy, ($:0]36.S). (15.25)

or

C,,($:D)=2.p,,C,;(S.D. (15.26)
=
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2) with the knowledge of J,
Let C'(S,,1) represent the value of the call, in this casewhen J, = j ; we have:

Cl(S.D)=2P(J,=i[d,=])C;($.]). (15.27)
i=1
From the Bayes formula, we obtain:
. P(J,=i,3,=])
P(Jy=i|d=])=——7+
R e ) 15.28
__ap, (15.28)
2 3Py
k=1
and so, from relation (15.27):
j N ah
C(&Y=2 % Ci(S.D). (15.29)
Ay
k=1

Let us note that this case is useful if the investor wants to anticipate the final
value of the environment state at time O.

3) with no knowledge of J, and J;

In this case, with the help of relation (15.26), we can write that the call value
represented by C(S,,1) isgiven by:

C($D=2.aC (S, (15.30)
or with the help of relation (15.29) by:
C($.D)=2.>.ap,C'($0). (15.31)
j=1 k=1

15.1.1.3. Examples

The application of our one-period model is already useful with only two or three
states. Indeed, it is quite natural to consider one state, for example, state O to model
the normal economic and financial environment; then we can add a supplementary
state —1 to represent an abnormal situation like a crash or a doped situation.
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With three states, we can separate the crash possibility represented by state —1
from the doped situation represented by state 1, state 0 always being the normal
case.

Example 15.1 A two-state model
As stated just above, let the state set be:

| ={0,1} (15.32)

with state 0 as the normal economic and financial situation environment and state 1
as the exceptional in the sense of, for example, a crash or doped situation.

Numerical data are the following:

a=(0.95,0.05),
o_ 0.98 0.02 e 1.03 1.05 (15.33)
060 04|~ |1.05 1.03|

13 1.1. 0.7 05
U= , D= .
— |106 12| — |04 06
Example 15.2 A three-state model
Here, let the state set be:
| ={-1,0,1}. (15.34)
State O represents the normal economic and financial situation environment, state

—1 the exceptionally bad situation in the sense of, for example, a crash situation and
state 1 as exceptionally good as a doped effect of the Stock Exchange, for example.

Numerical data are the following:

a=(0.05,0.90,0.05),

06 03 017 [L05 1.03 102
P-{002 096 002|,v=|105 103 102, (15.35)
06 035 005 |106 104 103
107 110 120] [05 07 08
U=|107 110 120|,D=| 06 07 08|,
107 109 115 |065 07 08
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For both examples, we will consider a European cal option with
Sy =100 and K =80 and 95.
Results are given in Table 15.1.
S 100
K 95
Example 1
transition Al| a2 | a3 |p(ij)|r(j) |udj)|d@j)| afij) [Cij(100,1)|Ci(100,1)|C(100,1)
0to0 0.95(0.05 0.98/1.03|/ 1.3 |0.7| 0.55 | 2.6699 | 2.7038
O0tol 0.02[1.05| 1.1 | 0.5 |0.9167| 4.3651
1t00 0.6 |1.05/1.06| 0.4 {0.9848| 4.6898 | 4.2054
lto1l 0.41.03| 1.2| 0.6 |0.7167| 3.4790
2.7789
Example 2
0.05| 0.9 [0.05
bad to bad 0.6 |1.05|1.07| 0.5|0.9649| 4.5948 | 4.2280
bad to normal 0.3(1.03|1.1| 0.7 0.825| 4.0049
bad to good 0.1(1.02/12{0.8| 055 | 2.6961
normal to bad 0.02(1.05|1.07| 0.6 |0.9574| 4.5594 | 4.3275
normal to 0.96(1.03|1.07| 0.7 [0.8919| 4.3296
normal
normal to good 0.02(1.02|1.07| 0.8 |0.8148| 3.9942
good to bad 0.6 1.02| 1.2 |0.65|0.6727| 3.2977 | 3.2361
good to normal 0.35(1.02| 1.2 0.7 | 0.64 | 3.1373
good to good 0.05|1.03|1.15| 0.8 [0.6571| 3.1900
4.2679

Table 15.1. European call option examples
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15.1.2. The multi-period discrete Markov chain model

Let us now consider a multi-period model over the time interval [0,n], n being
an integer larger than 1, always under the assumption of absence of arbitrage.

To obtain useful results, we will still follow the fundamental presentation of the
CRR model (Cox, Rubinstein (1985)) but adapted for our Markov environment in
such away that tractable results may be found:

1) result with knowledge of J,,...,J,

Let us begin with a discrete time model with n periods and suppose that given
Jgrnd,S(0) =S with J,=i,J, =], the up and down parameters, the non-
risky interest rate and the probabilities of an up movement for each period are the
same for all periods and given respectively by U, ,dij,rij and ¢ .

Then, the asset value Sn) at time nisgiven by:

SN =V, Vi i, (15.36)

where the conditional distributions of the random variables V are defined as:

U with probability g., . .
- _{ i p Yy G cl. (15.37)

d, with probability 1-g,

Moreover, we suppose that, for each n, the random variables V, ; ,...,V, ; are
conditionally independent given J,,...,J,,.

If the random variable M represents the total number of up movements on
[0,n], the asset value at time n is given by:

S(n) =(u i )Mn (dij )n_M" S (15.38)
and consequently:

In%:Mnaniﬁ(n—Mn)lndij. (15.39)
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Given J, = jo,..J, = ],,S(0) =S, the conditional distribution of M is a
binomial distribution with parameters (n, ;) . It follows that:

S(n : .
E('”%Uo = Joreend, = J,,S(0) = %): n(g; Inu; +(1-q;)Ind;) . (15.40)
Concerning the conditional variance, we obtain:
2
S(n),, . . _ B 3 Yy
var| In—=> 5 19 = Jprdn =1 S0)=S |=n| g, (@ qglnd . (15.41)
ij

Choosing now for the up probability on the n periods, the risk neutral probability
given by relation (15.10):

~ T —dy

G, = , (15.42)
b, —dy

it is clear that, under our assumptions, for each n, given J,,...,J,,S(0) = § with

Jo =i, J, =], wehaveaCRR model, so that their results recalled in the beginning
of this chapter concerning the European call are valid. Consequently, we obtain the
value of the European call with exercise price and maturity n as the present value of
the expectation of the “gain” at time n under the risk neutral measure, that is:

C($,0[9, =i,y 3, = )

L - mafuars -k

Vij k=0

(15.43)

After some calculation, we can obtain the following expression (see Cox and
Rubinstein (1985)):

C(SnJy=i,dp0d, = )
. K U
$B(a;;n,q ij)_?B(aﬁ;n’q“)’ if & <n, (15.44)

ij

0 if a; >n,
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where B(X;m,a) isthe value of the complementary binomial distribution function
complementary with parameters m, & at point X and

[inkrgrs)
| T, 7dy) )
s uij

qij:_qij'

i

1j
(15.45)

Result (15.44) can be seen as the discrete time extension of the Black and
Scholes formula given the environment:

Jo=ind =j,5(0)=S,. (15.46)

2) result with knowledge of J, =i

If we only know the initial state of the environment J, =i, it is clear that the
value of the call is given by

C(S.n) = i p{"C, (S,.n) (15.47)

where, of course:
[ ]=P". (15.48)

3) result with knowledge of J, = ]
Proceeding as in the previous section, the use of the Bayes formula provides the
following result, now on n periods instead of one:
P(‘]o :i"]n = J)
P(3,=1)
a plgn) (15.49)

2.anp
k=0

P(J,=i|d,=])=
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and so the value of the call given J,,=j, represented by C! (§,n), isgivenby:

CJ(S) n) z pl]
i= 1zakp(n)

i (S5:1). (15.50)

4) result with no environment knowledge

Finaly, if we have no knowledge on the initial environment state but know its
probability distribution given by (15.1), the value of the call denoted C(S,,n)is
given by

C(&.n) = iaici (S.n) (15.51)
or by
C(8,m =X Y-8 A'C! (S,1) (1552

15.1.3. The multi-period discrete Markov chain limit model

To construct our continuous time model on the time interval [0,t], let us begin to
consider a multi-period discrete Markov chain model with n periods, where each
period has length h so that we have equidistant observations at time 0,h,2h,...,nh
with n=|t/h].

We also assume that in the approximated discrete time model, the environment
process is a homogenous ergodic Markov chain defined by relations (15.1) and
(15.2) and that (see Cox and Rubinstein (1985)), for each n, given
Jornd,S(0)=§ with J,=i,J,=], we select, in each subinterval
[kh (k +1)h], thefollowing up “and down parameters:

Fa o
_g”nd _ea”n

Ik ke Pk ke

1 1 /Ll”
qjkik+1 2 55 2 o, Py

(15.53)
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thus depending on thetwo Mx M non-negative matrices:

L ] L) (15549
From relations (15.40) and (15.41), it follows that, for al n:
S
E( = I, 21,50 = Soj st (15.55)
var(ln Sé:) |96 = Jorerrdn = J, S(0) = S"] =oit. (15.56)

As our conditioning implies that we can follow the reasoning of Cox and
Rubinstein (1985), we know that, for N — +oo:

S(t)

In=-2 < N(gt, o), (15.57)

where jo= i asthe initial environment state observed at t = 0 and j the environment
state at time't.

Concerning the non-risky interest rates, we also suppose that, for all i and j, there
exists v; >1 such that the new return rate for all the periods (kh,(k+1)h)),

denoted rIJ , for N — +oo, satisfies the following condition:
n At
L+r)" —> @+r). (15.58)

Now let C; (S,,n) represent the value a time 0 of a European call option with
maturity n and exercise price K.

Using the proof of the Black and Scholes formula given by Cox and Rubinstein

(1985)) but with our parameters depending on all on the environment statesi and j,
we obtain under conditions (15.53) and (15.58), for fixed t:

Ci(S:n)—>Ci(S1) (15.59)
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where:

Cij (%’t) = SJCD(dijll) - Kri{tq)(dijl,z)!

In KSrol
0 =— flt +%aij Jt, (15.60)
ij
dijt,z = dij 170 \/E

This result gives the value of the call at time 0 with i as the initial environment
state and j as the environment state observed at timet, represented from now by J, .

If we want to use the traditional notation in the Black and Scholes (1973)
framework, we can define the instantaneous interest rate intensity p; such that:

=€ (15.61)
so that the preceding formula (15.60) now becomes:

Cijl (Swt) = qu)(dim) - Kej)”t(b(dijt,z)f

1 S o}
ij

d; , =d;,— ot

e

15.1.4. The extenson of the Black-Scholes pricing formula with Markov
environment: the Janssen-Manca formula

The last result (15.62) gives afirst extension of the Black and Scholes formulain
continuous time from the knowledge of the initia and final environment states,
respectively J, and J, where J, represents, as stated above, the state of the
environment at timet.

Now, aways with the assumption that the Markov chain with matrix P is
ergodic, we can extend results (15.44), (15.50) and (15.52) valid for our discrete
multi-period model to our continuous time model, thus giving the following main
resullt.
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Proposition 15.1 (Janssen and Manca (1999))

Under the assumption that the Markov chain of matrix P of the environment
process is ergodic and given that the initial environment state i el and the
environment state at time t is j €l , the non-risky rate is given by p; and the
annual volatility by o, then we have the following results concerning the
European call price at time O with exercise price K and maturity t:

(1) with knowledge of state J,=i,J, =], the call value is given by result
(15.62),

(2) with knowledge of state J, =i, the call value represented by C, (S,,t) is
given by:

C(S0=27,C, (S0, (1569

(3) with knowledge of state J, = j , the call value represented by C'(S,,t) is
given by:

SIEED I IHCR (1564

(4) without any environment knowledge, the call value represented by C(S,,t)
isgiven by:

C(8,D=2.aC (S, (1569
or
C(S,,t) :_Zm:njci (S,1). (15.66)

Proof Result (1) is proved in the previous section.

Result (2) follows from relation (15.47), letting n go to +00 and then using
result (1) and the assumption of ergodicity on the environment matrix chain P.

Result (3) can easily be deduced from result (2) and relation (15.50).

Finally, result (4) follows immediately from relations (15.51) or (15.52) and
results (2) and (3). m]
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Examples 15.1 and 15.2 of the preceding section are covered in Table 15.2

where“?" means “unknown”.

Example 1
K 80 K 80
S 100 S 100
0toO 0toO
t Cij(100,t) t Cij(100,t)
0.25 22.18 0.25 11.84
05 24.87 0.5 15.69
0.75 27.24 0.75 18.7
1 29.35 1 21.26
1to0 0.25 22.01 0.25 11.18
05 24.54 0.5 14.86
0.75 26.83 0.75 17.8
1 28.91 1 20.32
?to1l 0.25 21.57 0.25 10.17
05 23.64 05 13.42
0.75 25.61 0.75 16.03
1 27.43 1 18.29
?t0? 0.25 2211 0.25 11.31
05 24.35 0.5 14.54
0.75 26.58 0.75 17.43
1 28.62 1 19.93

Table 15.2. Janssen Manca option model results

In conclusion, the Janssen-Manca approach gives for the first time a new family
of Black and Scholes formulae taking into account the economic and social
environment showing that:

—a"“good” extension of the traditional Cox Rubinstein model is possible;
—the model also extends the Black and Scholes model;

—numerical results are possible.

Moreover, as the Janssen-Manca formulae are linear combinations of the
traditional Black-Scholes results, the Greek parameters can also be calculated and
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will be linear combinations of the Greek parameters given in section 14.6 and
similarly for hedging coefficients.

We also add that, from our point of view, one of the main potential applications of
our new model concerns the possibility of obtaining a new way of using the Black and
Scholes formula with information related to the economic, financial and even political
environment, provided it can be modeled by an ergodic homogenous Markov chain.

This model also provides the possibility of taking into account anticipations
made by the investors in such a way as to incorporate them in their own option
pricing and can also be used for models with financial crashes aswell as to construct
scenarios, and particularly in the case of stressin aVaR type approach.

15.2. The extension of the Black-Scholes pricing formula with a semi-Markov
environment: the Janssen-M anca-Volpe formula (Janssen and Manca (2007))

15.2.1. Introduction

In this section, we present the semi-Markov (SM) extension of the Black and
Scholes formula to the Janssen-Manca-Volpe model to eliminate one of the
restrictions of the Black and Scholes model, that is, the assumption of constant
volatility over time.

There have been many attempts to slacken this condition, as for example in the
model of Hull and White (1985) where the concept of stochastic volatility is
introduced, but to our knowledge, in practice, no generalized model really supplants
the traditional Black and Scholes model.

Whilst comparing the Markovian Janssen-Manca model of the preceding section,
we developed another type of model. More precisely, we present new semi-Markov
models for the evolution of the volatility of the underlying asset.

In fact, the SM model presented here assumes a type of SM evolution for the
volatility of an initial Black-Scholes model presented at the ETH Zurich (1995) by
Janssen, and in a different approach by E. Cinlar at the First Euro-Japanese meeting
on Insurance, Finance and Reliability held in Brussels in 1998 which led to a
generalization of the traditional Black and Scholes formula for the pricing of
European calls with easy numerical applications.
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15.2.2. The Janssen-Manca-Cinlar model

The semi-Markov extension of the Black and Scholes model assumes a type of
SM evolution for the volatility of an initial Black and Scholes model presented by
Janssen (1995) and, more recently, in adifferent approach by Cinlar (1998).

Hereby, we present Janssen’ s initial model which is similar to the presentation of
Cinlar, however he provides the formula for the pricing of a call option using the
Markov renewal theory.
15.2.2.1. The IMC (Janssen-Manca-Cinlar) semi-Markov model (1995, 1998)

Let us consider a two-dimensional positive (J-X) process of kernel Q with state
space:

| ={1,...,m}. (15.67)

This means that on the probability space (Q,S,P), we define the three-
dimensional process

((3,.(X,,0,)),n=0) (15.68)
with:

J, el (X,,0,)eR" xR", (15.69)
such that:

P(X,<x0,<0,3,=[(3.(X..0,)) k=0.1...n-1) (1570

=Q, (X,0),ps.

Weknow that the Q; ,i, j € | can be written in the following form:

Q;(x,0)=p;F;(x,0) (15.71)
where:

b =P(J, =i k<n-1J , =i), (15.72)

F,(x.0)=P(X,<x0,<0|(,.(X.0))ksn-1J,,=i). (1573)
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We also introduce the following r.v.:

T, =X +-+X,,n=0,
N(t) =sup{n:T, <t},t >0, (15.74)
Z(t)=Jyy t20.

As usual, the transition probability for the process Z =(Z(t),T > 0) isdesigned
by:

¢t =P(Zt) = j|z®) =i) (15.75)

and the stochastic processes (N(t),t e R"),(Z(t),t e R") are respectively the
Markov renewal counting and the semi-Markov processes.

To give the financial interpretation of our model, let us define on the probability
space (Q, 3, P) , the following filtration 3= (J,,teR"),

3, = o((3,,(X,,0,)),n< N(t)). (15.76)

Given 3¢, let us consider the random timeinterval | Ty, Ty (t)+1] on which we
define the new stochastic process (S(t),t e R"), representing the value of the
considered financial asset, asthe solution of the stochastic differential equation:

ds . . '
S(t I) = ﬂJN(l)JN(l)+1dt + GJN(()‘]N(I)AdW (t _TN(t))’t € I:TN('[) ’TN(t)+1:|’

IN(t)IN(t)+1 (1577)
S(TN(t) )= S(TN(t)_)i

where process (W (t),t'>0) is a standard Brownian motion on
IN(t)IN(t)+1
[TN ® ,TN(M] defined on the basic probability space stochastically independent on

(‘]N(I) ! XN(I) ) ’

This mode has the following financial interpretation: at t = 0, the asset starts
from the known initia value §;, with the known initia j-state J, representing the
state of the initial economic and financial environment. On thetimeinterval X, , the
asset has the random volétility o, and has as stochastic dynamics the SDE (15.77)
with t = 0; at time X, the J process has a transition to state J, and on the time
interval [Tl,TZ), the asset has the random volatility o, and has as stochastic
dynamicsthe SDE (15.77) with N(t) = 1, etc.
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We awaysdefine X, =0, as.

So, it is now clear that we have in fact a disrupted Black and Scholes model due
to this random change of volatility; note that this model is quite general as, in fact,
we have a random volatility on each time interval [TN 1 TN

Of course, for m= 1, we recover the traditional Black-Schol es-Samuel son model
for the description of an asset.

15.2.2.2. The explicit expression of t)
Given Jy s Ing.a» thelto caculus gives the solution of the SDE (15.77):

2
UJN(I)JN(()A
HININ(ya T 2

S(t ‘) = SN(t)e

€ |:TN(t) ’TN(t)+1:|'

Starting from state §; at time 0 and given a scenario for the economic and
financial environment (J,,J,,...,J,,...), this expression gives the explicit form of
the trajectories of the process (S(t),t > 0).

"
TaneyInaV E-Tu)

e : (15.78)

Now, given (Jg, Xo,Jdp, Xpsedyw » X 9 nysar Xnysa)s from relation
(15.78), we obtain:

2

S(t ) ILIJN([)JN(‘M 3 GJN(I)JN(I)+1 )t n O-JN(”JN([MW(t I_TN([)) ,
SNm 2 (15.79)
t'e[ Ty Tuwe |
so that for t'e [TNO) ’TN(t)+l:| ;
2
S(t ) O-JN £)IN (t)+1
<N ‘UJN(«)JN(1)+1 - ()2 = (t (t))
SN(I) (15.80)

2 1
O-‘]N(t)JN(t)+1 (t _TN('())'

St J I N(t
)
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Va{ S(t) ‘SU'JN(t){L] — ez'ulN(t)vJN(ﬁ)A(tI_TN(T)) eo'JzN(t)JN(t)q(t'_TN(l)) -1|. (1582)
(t)

L et us suppose that the random variables

Sbv‘]o’ X11 ‘]1""’ ‘]N(t) ) XN(t)+1’ ‘]N(t)+l

S(t)

are given; it follows that the conditiona distribution function of —= is a

lognormal distribution, i.e.:

In& <
(15.83)

2 2
N (‘uJoJl X+t Hayoinon (t _TN(U)’O-JoJi Xyt O niynin (t _TN(t)))'

15.2.3. Call option pricing

Now to obtain a useful model, let us proceed as in Janssen and Manca (1999);
for a fixed t, we assume that al the parameters 4,0 only depend on
Jos Ing » Inysa» AN tisrepresented by

’uJoJN(t)JN(tm’O-JOJN(t)JN(n)+1 (1584)
so that from relation (15.83):
S(H) 1, 2
In§< N uJOJN(t)JN(t)A _EO-‘]O‘]N(I)‘]N(!)A t’O-JO‘]N(l)‘]N(l)At ’ (15.85)

Of course, we can aways simplify our basic assumption by suppressing the
dependence with respect to Jy ., andevento Jy,.

Nevertheless, we think that the dependence from the future environment state
J,\,(t)+1 is quite important as it gives for the first time the possibility of modeling the
stochastic asset evolution taking into account this anticipation of the next future
state.

Let us now consider a European call option with t as the maturity time, and K as
the exercise price that we must price at time 0.
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If we want to assume that there is no arbitrage possibility, we must impose that

ﬂJO‘]N(l)JN(!)A _5‘]OJN(!)‘]N(I)+1 (15'86)

where & Jodnc represents the equivalent instantaneous non-risky return on [0,t]

yIN()+1

given Jy, Iy » Ingeysa- DOING SO, we will use the risk-neutral measure under which

1)
the forward value of the asset is a martingale, otherwise we work with the initial
“physical” measure more appropriate for insurance than for finance.

Knowing Jy, s Ing.a @nd working with the risk neutral measure, we can
calculate the value of the call at time O using the traditional Black and Scholes
formula

_ -t
CJOJN(l)JN(l)+l (%’t) - SJCI)(dJOJr\J(t)JN([)+1x1) - KrJOJN(t)JN([)+1cD(dJoJN(I)JN(t)AvZ)’
S

In——

I, 1
_ JodnInn
dJOJN(I)JN(IM,l - t + EGJOJN(I)JN(I)+1\E’ (1587)

JoInyIne)a
Jt

= -0
JoIn(tyIngryn:2 JoIn(ty Iyt JoIn(tyIn(tyi

_ JJOJN(I)JN(I)A

1%
JoIn(tyIn(tyin

To obtain the formula of the cal only knowing S,,J,, we must use the
following formula:

Cy, (0 =E(Copsynes (S0 S). (15.89)

From the theory of semi-Markov processes, we abtain:

C©=E(Copp . (S5:D]30. %),
C,, ()= ZZ P Py Co i (S:1)-

jel kel

(15.89)

If we have no information about the initial state J,, we of course obtain the
following formula:
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C) = E(Cy, (0) = E(E(Copny s (S:030. ).
Ct)=2.aC ).

iel

(15.90)

Remark 15.1 Numerical treatments are possible.

15.2.4. Stationary option pricing formula

In option pricing, it is nonsense to let t tend towards +oo ; nevertheless, we can
use the limit reasoning proposed by Janssen by supposing that on the time horizon
[O,t], the semi-Markov environment has more and more transitions in this finite time
period.

We can model this situation under the assumption that the conditional sojourn
time meansthat by i, j € | satisfy the conditions

b, =&, >0,
. . (15.91)
hj = E(Xn|‘Jn—l:|"Jn = J)
so that:
=Py =6 g =ebiel,
jel jel
(15.92)
0 = Z By -
jel
From the asymptotic theory of semi-Markov processes, we know that:
. . TiPiSik . .
IglggP(JN(t) = .y =K) =20 jel, (15.93)

zﬂlel
=

where the vector (7 ,...,7,,) is the unique stationary distribution of the embedded
Markov chain of matrix P assumed to be ergodic.

The new parameters ¢, i,],kel represent factors expressing the
proportionality of the sojourn in each environment state.

Now result (15.89) becomes:
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C, ()=, kZ %Jojk(so,t). (15.94)
i« kel 7,6
é (|

From (15.90), we obtain

cn=YaYy ¥ IPrc, (s, (15.95)
iel jel kel Zﬂ_lgl
1=1

This last formula replaces the Black and Scholes formula without any a priori
information at time O except of course the initial value of the asset §,.

In conclusion, the new model proposed here extends the traditional Black and
Scholes formula in the case of the existence of an economic and financia
environment modeled with a homogenous semi-Markov process taking into account
this environment not only at the time of pricing but also before and after the
maturity date.

This new family of Black and Scholes formulae seems to be more adapted to the

reality, particularly when taking into account the anticipations of the investor or the
consideration of stress scenario in the philosophy of the VaR approach.

15.3. Markov and semi-Markov option pricing models with arbitrage
possibility

The aim of this last part is the presentation of new models for option pricing,
discrete in time and within the framework of Markov and semi-Markov processes as
an dternative to the traditional Cox-Rubinstein model and giving arbitrage
possibilities. Both cases of European and American options are considered and
possible extensions are given.

15.3.1. Introduction

Let us consider an asset observed on a discrete time scale
{0,1...,t,.T}, T < (15.96)

having S(t) as market value at timet. To model the basic stochastic process
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(St)’ t = O’l""YT)’ (15.97)

we suppose that the asset has known minimal and maximal values so that the set of
al possible values is the closed interval [S,,,,S,.] partitioned in a subset of m
subclasses.

For example, if & isthe value of the asset at time 0, we can put:

Sb — Smax ;Srnin

S =5 +kAk=1..,0,

S, =5 -kak=1..0,

A= Smax _Smin
20

(15.98)

U being arbitrarily chosen.

This implies that the total number of statesis 2v +1. In the following, we will
order these states in the natural increasing order and use the following notation for
the state space:

| ={-v,-(v-D,...,0,1,...,0}. (15.99)

We can aso introduce different step lengths following up or down movements
and so consider respectively A,A".

Itisalso possibleto let

S =+ (15.100)

and

T — o0 (15.101)
particularly to obtain good approximation results.

Let us suppose we want to study a call option of maturity T and exercise price
K=k,A in both European and American cases bought at time 0.

So, in the European case, the intrinsic value of the option is given by:

C(T) = max{0, S(T) — K}. (15.102)
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For the American case, the optimal time for exercising is given by the random
time 7 such that:

(15.103)

To obtain results, we must now introduce in the following section a stochastic
model for the S-process.

15.3.2. The homogenous Markov model for the underlying asset

Let us suppose that we are working on the filtered probability space
(2,3,(3,)P).

In our first model, we will suppose that the underlying asset Sis a homogenous
Markov chain with matrix:

P= [ P, ] (15.104)
on the state space | given by relation (15.99).

It follows that, at time t, given the knowledge of the asset value S(t) =S, the
market value of the option at time t, C(t), thus with a remaining maturity T-t and
exercise priceK givenby K =k A, has as the probability distribution:

P(C(T) =(j —k)A) = p[", j > ko,

P(C(T)=0)=> pS;".

I<kq

(15.105)

This result gives the possibility to calculate all interesting parameters concerning
C. For example, the mean of C(t) hasthe value:

E(CM)[St)=8) =), p;" (1 —ko)A.

I>ky

(15.106)

Of course, we have to calculate the present value at time t with the non-risky unit
period interest rate r so that the value of the call at timet is given by:

C(t) =V 'E(CM)[S(t) =8) =v"" > pd; " (I —ky)A,
- (15.107)
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If matrix P is ergodic, then if T-t is large enough, results (15.105) and (15.106)
can be well approximated by:
PC(M) = (I —k)A)=7;, ] >k,
PCM=0=>r,j<k,

1<ko
E(CM)[St)=5)=2 7,(1-k)A,
1>k
C(t) =v“27zj (I —ky)A. (15108)
I>ko
Of course, the vector
T=(7 s Tgyeen T,) (15.109)

is the steady-state vector related to the matrix P.

15.3.3. Particular cases

As we stated in our introduction, our homogenous Markov model contains as a
very specia case the famous CRR binomial model but with fixed minimal and
maximal values. It sufficesto select a Markov matrix P with the structure

* * 00 - 0000
* 0* 0 0000
0*0* 0000
0* 00000
: (15.110)

0000 - *

0000 -« *0*0
0000 - 0*0*
0000 - 00 * *|

and as the Cox-Rubinstein model has a multiplicative form, we can consider that:

A:{(u_l)S‘J’u>lS>S°’ (15.111)
(1-d)S,,d<1S<S,.

Remark 15.2 Under (15.100), matrix P has an infinite number of rows and columns.
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We can also obtain the trinomial model if we put in (15.110) a non-zero main
diagonal, etc.

15.3.4. Numerical example for the Markov model

To numerically illustrate our first model, et us suppose that we are interested in
an asset whose possible values are restricted to the following ones:

—maximum value: state 3 = 1,650;

—intermediary values: state 2 = 1,600, state 1 = 1,550, state 0 = 1,500;
— state—1 = 1,450, state —2 = 1,400;

—minimum value: state -3 = 1,350.

With the used notation, this means that S, =1,500, A =50. Moreover, we also
suppose that the transition matrix P, with the week as unit step, is given by

11114540
6 3 3 6
111114,
36 6 6 6
121111,
777777
(15.112)
0o 1114,
2 4 4
ooEEEEO
777 7
0o l2211
777 7 7
0o0oo 111
i 2 4 8 8

Itis easily seen that matrix P is ergodic with as unique stationary distribution:

(0.10002, 0.13336, 0.27228, 0.23737, 0.16927, 0.07539, 0.01231).

Then, starting at time 0 in state 1,500 with a maturity time of 16 weeks, the
asymptotic value of the European call option expectation with 1,500 as exercise
priceis 41.95 and the call value at time 0is 41.328.

Table 15.3 gives option expectations and option values with different exercise
prices.



636 Mathematical Finance

Exercise price Option expectation Option value
1,350 174.106 171.512
1,400 124721 122.826
1,450 79.1059 77.927
1,500 41.9538 41.328
1,550 16.6704 16.422
1,600 5.00113 4.927
1,650 0 0

Table 15.3. Markov option calculation

Let us now consider the transient behavior, meaning that we will consider the
maturity as a parameter expressed in n weeks. Table 15.4, gives option expectations,
Table 15.5 option values with as exercise price 1,500 and for different maturity
times from 1 to 16 weeks.

STATE

n -3 -2 -1 0 1 2 3

1 75.00 75.00 57.14 25.00 14.29 7.14 0.00
2 60.71 53.57 46.93 38.39 30.10 2041 16.96
3 50.02 48.40 43.39 40.60 37.08 31.61 31.39
4 45.70 44.92 42.79 41.11 39.61 37.39 37.44
5 43.70 43.30 42.35 41.57 40.84 39.87 39.81
6 42.76 42.58 42.13 41.78 41.45 40.98 40.96
7 42.33 42.24 42.04 41.87 41.72 41.50 41.50
8 42.13 42.09 41.99 41.92 41.84 41.75 41.74
9 42.03 42.02 41.97 41.94 41.90 41.86 41.86
10 41.99 41.98 41.96 41.95 41.93 4191 4191
11 41.97 41.97 41.96 41.95 41.94 41.93 41.93
12 41.96 41.96 41.96 41.95 41.95 41.94 41.94
13 41.96 41.96 41.95 41.95 41.95 41.95 41.95
14 41.96 41.96 41.95 41.95 41.95 41.95 41.95
15 41.95 41.95 41.95 41.95 41.95 41.95 41.95
16 41.95 41.95 41.95 41.95 41.95 41.95 41.95

Table 15.4. Option expectation
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STATE

n -3 —2 -1 0 1 2 3

1 70.93 74.93 57.09 24.98 14.27 7.14 0.00
2 60.60 53.47 46.85 38.32 30.05 20.37 16.93
3 49.88 48.27 43.26 40.48 36.98 31.53 31.31
4 45.53 44.75 42.63 40.26 39.45 37.25 37.30
5 43.50 43.10 42.15 41.38 40.65 39.68 39.63
6 42.22 42.34 41.90 41.54 41.21 40.75 40.73
7 42.05 41.97 41.76 41.60 41.45 41.23 41.22
8 41.81 41.77 41.68 41.60 41.53 41.43 41.43
9 41.68 41.66 41.62 41.58 41.55 4151 41.50
10 41.60 41.59 41.57 41.55 41.54 41.52 41.52
11 41.54 41.54 41.53 41.52 4151 41.50 41.50
12 41.49 41.49 41.49 41.48 41.48 41.47 41.47
13 41.45 41.45 41.45 41.44 41.44 41.44 41.44
14 41.41 41.41 41.41 41.41 41.41 41.41 41.40
15 41.37 41.37 41.37 41.37 41.37 41.37 41.37
16 41.33 41.33 41.33 41.33 41.33 41.33 41.33

Table 15.5. Option value

15.3.5. The continuous time homogenous semi-Markov model for the underlying
asset

With the generdization of electronic trading systems, it seems more adaptive to
construct a time continuous model for which the changes in the values of the
underlying process may depend on the time it remained unchanged before atransition.

Also, let

((s,,T,)n=01...) (15.113)

be the successive states and time changes of the considered asset.

The Janssen-Manca semi-Markov continuous model without AOA starts from
the basic assumption that process (15.113) is a semi-Markov process of kernel Q.

It follows that, at time t in state St) = S, the market value of the considered
European option with maturity T —t has as probability distribution at maturity time
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PICM) = (i —k)) =5, (T-1),] >k,
P(C(T)=0)= Y ¢, (T -1), ] <k, (15.114)

1<K,

Of course, matrix @(t) represents the transition probabilities for the considered
semi-Markov process (see relation (12.101)).

This result gives the possibility to calculate al interesting parameters concerning
C. For example, the mean of C(T) hasthe vaue:

E(C(T) =[St =8) = 3¢5, (T -)(j - k,)A (15.115)
>k
The pricing of the option at timet is here given by the conditional market value C(t):
C(S.H)=V"D ¢, (T-1)(j —ky)A (15.116)
>k
which is the Janssen-Manca-Di Biase formulafor the considered semi-Markov model.
If the semi-Markov process is ergodic, then, if (T —t) is large enough, results
(15.114) can be well approximated by:
PC(M) =(] ko)) =7;,] >k,
PCM=0=Y7,j<k,. (15.117)

1<K,

The stationary version of the Janssen-Manca-Di Biase formulais thus given by

C(S.) =V 7 (] — ko)A (15.118)

i>ko

Of course the vector (7,,...,7,,) isthe asymptotic distribution of the embedded
semi-Markov process given by relation (12.15) .

Formally the evaluation of assets is continuous, but substantialy is given in the
discrete case; furthermore, the numerical solution of a continuous time semi-Markov
process causes problems of numerical and stochastic convergence. For these
reasons, it may be useful to deal with our problem with the discrete time
homogenous semi-Markov process as introduced in Janssen and Manca (2007).
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15.3.6. Numerical example for the semi-Markov model

We will only provide a numerical example for the semi-Markov model in the
asymptotic case, i.e. values of the option expectation and of the options for large
maturities.

We merely need as supplementary information, the conditional mean sojourn
times given by relations (12.25). The used values are given by the following matrix
X

NP
=N
[
N
[N
[
[N

=
N
N
=

(15.119)

P NP NP AR

P NI NP
N
=Y

1 111

NP NP NR e

Wik N -
Wik N

In this case, the asymptotic distribution for the semi-Markov processis:
(0.09487, 0.12650, 0.38238, 0.15352, 0.15013, 0.08358, 0.00902).

Then, starting at time 0 in state 1,500, the asymptotic value of the call option
expectation with 1,500 as the exercise priceis 46 and the call value is 45.315.

The following table gives option expectations and option values with different
exercise prices.

Exercise price Option expectation Option value
1,350 178.78 176.119
1,400 129.234 127.308
1,450 83.8638 82.614
1,500 46.0002 45.315
1,550 15.8126 15.577
1,600 4.74378 4.673
1,650 0 0

Table 15.6. Semi-Markov option calculation
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15.3.7. Conclusion

The IMD models presented here provide a semi-Markov approach for the pricing
of option financial products working in discrete time and with a finite number of
possible values for the imbedded asset, which is always the case from the numerical
point of view.

The main interest of these models is that they work even when there are
possibilities of arbitrage, that is to say, for the most common cases. Of course, one
of the main difficulties in applying this model is the fitting of the needed data and
thisis only of interest in the case of asymmetric information so that the economic
agent can believe in his own information, knowing that he will always be in a risky
situation to expect gain but still worried about the possibility of losing as in the case
of ared life situation!

It is also important to point out that the numerical examples are coherent;
nevertheless, there are significant differences according to the model used, Markov
or semi-Markov, so that it is very important to select the most concrete one.



