
Chapter 15 

Markov and Semi-Markov Option Models 

15.1. The Janssen-Manca model  

In this section, we present a new extension of the fundamental Black and Scholes 
(1973) formula in stochastic finance with the introduction of a random economic 
and financial environment using Markov processes, which we owe to Janssen and 
Manca (1999). 

 
In preceding papers (Janssen, Manca and De Medici (1995), Janssen, Manca and 

Di Biase (1997), Janssen, Manca and Di Biase (1998), Janssen and Manca (2000)), 
these authors already show how it is useful to introduce Markov and semi-Markov 
theory to finance, with the assumption that the evolution of the asset follows a semi-
Markov process, homogenous or non-homogenous, and how to price options in such 
new models. The main idea of this approach is to insert a strong dependence of the 
asset evolution as a function of the preceding value. 

 
The construction of this new model starts from the traditional CRR model with 

one period to obtain a new continuous time model satisfying the absence of arbitrage 
assumption. 

 
One of the main potential applications of our model concerns the possibility of 

obtaining a new way of using the Black and Scholes formula with information 
related to the economic and financial environment, particularly concerning the 
volatility of the underlying asset. 

 
This new model also provides the possibility to take into account anticipations of 

investors in such a way as to incorporate them in their own option pricing. 
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In the same philosophy, the model can be used to construct scenarios, 
particularly in the case of stress in a VaR approach. 

15.1.1. The Markov extension of the one-period CRR model 

15.1.1.1. The model 

Starting on a complete probability space , , P , let us consider a one-period 
model for the evolution of one asset having the known value 0(0)S S  at time 0 and 
random value S(1) at time 1. 

 
The economic and financial environment is defined with random variables 

0 1,J J  representing the environment states respectively at time 0 and time 1. These 
random variables take their values in the state space 1,...,E m  and are defined 
on the probability space by: 

0
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Furthermore, let us introduce the following function of 0 1,J J : 
0 1J Ju ,

0 1J Jd , 

0 1J Jq such that, a.s.: 

0 1 0 1 0 1

0 1 0 1

0 ,

1,  1 ,

J J J J J J

J J J J

d r u

d r
  (15.3) 

0 1
0 1.J Jq   (15.4) 

The one-period model, related to the process (0), (1)S S , is the following: 
given 0 1,J J  and that 0(0)S S , the asset has the following evolution: it goes up 
from 0S  to 

0 1 0J Ju S  with the conditional probability 
0 1J Jq  or goes down from 0S  to 
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0 1 0J Jd S  with the conditional probability 
0 1

1 J Jq ; moreover, the non-risky interest 
rate of this period has the value 

0 1J J  defined by:  

0 1 0 1
1.J J J Jr   (15.5) 

Given 0 1,J J , we have: 
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E S J S p q u S q d S

E S S P J i p q u q d S0.

 (15.6) 

One of the basic concepts of stochastic finance is the absence of arbitrage 
possibility. In fact, it is equivalent to state that the process (0), (1)rS S  is a 
martingale where 1r  and  is an adequate non-risky interest rate for 
calculating the present value of S(1) at time 0. 

 
Here, we must take into account the possible information of the investor 

concerning the environment; at time 0, in addition to the knowledge of 0S , different 
information sets may be available. Three cases are possible: 

1) Knowledge of 0 1,J J  

In this case, the martingale condition: 

0 10 1 0 0(1) , , J JE S J J S r S   (15.7) 

becomes: 

0 1 0 1 0 1 0 1 0 10 0 0(1 )J J J J J J J J J Jr S q u S q d S  (15.8) 

or 

0 1 0 1 0 1 0 1 0 1
(1 ) .J J J J J J J J J Jr q u q d   (15.9) 
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This last condition is exactly the same as the CRR model; this means that the new 
conditional probability for which the martingale condition is satisfied is given by: 

0 1 0 1

0 1

0 1 0 1

J J J J
J J

J J J J

r d
q

u d
.  (15.10) 

This value defines the risk neutral conditional probability measure. 
 
As an example of its application in option pricing, let us consider that we want to 

study a European call option of maturity T = 1 and exercise price K bought at time 0. 
 
It follows that at time 1 or at the end of the maturity, the value of the option will 

be given by the random variable: 

( (1),0) max 0, (1) .C S S K
  (15.11) 

We calculate the price of the option at time 0 with a maturity period of value 1 as 
the conditional expectation under the risk neutral conditional probability measure, 
denoted 

0 1, 0( ,1)J JC S , of the present value of the gain at time 1:  

0 1 0 1

0 1 0 1 0 1 0 1 0 1

1
, 0 0 1

1
0 0

( ,1) max 0, (1) ,

max 0, (1 )max 0, .

J J J J

J J J J J J J J J J

C S E r S K J J

r q u S K q d S K
 (15.12) 

2) Knowledge of 0J  

Let us begin to see what the martingale condition becomes. 
 
We have: 

0 0 0 1 0 0 0(1) , (1) , , , .E S J S E E S J J S J S  (15.13) 

As the assumption of AOA is now satisfied for the conditioning with 0J  and 1J , 
we can write that 

0 10 0 0 0 0(1) , , ,J JE S J S E r S J S   (15.14) 

and so: 

0 10, 0 0 0 0(1) , , ,J JE S J S S E r J S  (15.15) 
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and finally: 

00, 0 0(1) , JE S J S S   (15.16) 

where: 

0 0 0
1

m

J J j J j
j

p r .  (15.17) 

These last two formulae show that, given, at time 0, the initial environment state, 
the AOA is still valid with risk neutral interest 

0 0
1 ,J J   (15.18) 

or 

0 0 0
1

,
m

J J j J j
j

p   (15.19) 

with 
0J jr  given by relation (15.5) which is perfectly coherent as relation (15.19) 

represents the conditional mean of the non-risky interest rate given 0J . 

3) No environment knowledge 

In this last case, the investor merely observes the initial value of the stock 0S  as 
in the CRR or the Black and Scholes models. As above, we can calculate the 
expectation of S(1) as follows: 

0 0 0(1) (1) ,E S S E E S J S  (15.20) 

and from relation (15.16): 

00 0 0(1) .JE S S S E S   (15.21) 

As, from relation (15.17), we obtain: 

0 0
1 1

.
m m

J i ij ij
i j

E S a p r ,  (15.22) 
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it follows that the AOA is still true in this case with a non-risky interest rate 
defined by: 

1 1

1 .
m m

i ij ij
i j

a p r   (15.23) 

From this last relation and relation (15.19), we obtain 
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  (15.24) 

Once more, these last two relations show the perfect coherence concerning the 
non-risky interest rates to be used with regard to the three environment information 
sets we can have. 

15.1.1.2. Calculational option pricing formula for the one-period model 

In the preceding section, relation (15.12) gives the value of a call option at time 0 
given the initial and final environment states 0J  and 1J . We now calculate the price 
of the option, firstly with only the knowledge at time 0 of the initial environment 
state 0J , then with only the knowledge of the final state 1J  and finally with no 
knowledge of the initial and final states: 

1) with the knowledge of 0J  

This value, denoted by 
0 0( ,1)JC S , is nothing other than the conditional 

expectation of 
0 1 0( ,1)J JC S  given 0J : 

0 0 10 0 0 0( ,1) ( ,1) , ,J J JC S E C S J S  (15.25) 

or 

0 0 00 0
1

( ,1) ( ,1).
m

J J j J j
j

C S p C S   (15.26) 
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2) with the knowledge of 1J  

Let 0( ,1)jC S  represent the value of the call, in this case when 1J j ; we have: 

0 0 1 0
1

( ,1) ( ,1)
m

j
ij

i

C S P J i J j C S . (15.27) 

From the Bayes formula, we obtain: 

0 1
0 1

1

1

,

                         i ij

m

k kj
k

P J i J j
P J i J j

P J j

a p

a p

 (15.28) 

and so, from relation (15.27): 

0 0
1

1

( ,1) ( ,1).
m

i ijj
ijm

i
k kj

k

a p
C S C S

a p

  (15.29) 

Let us note that this case is useful if the investor wants to anticipate the final 
value of the environment state at time 0. 

3) with no knowledge of 0J  and 1J  

In this case, with the help of relation (15.26), we can write that the call value 
represented by 0( ,1)C S  is given by: 

0 0
1

( ,1) ( ,1),
m

i i
i

C S a C S   (15.30) 

or with the help of relation (15.29) by: 

0 0
1 1

( ,1) ( ,0).
m m

j
k kj

j k

C S a p C S   (15.31) 

15.1.1.3. Examples 

The application of our one-period model is already useful with only two or three 
states. Indeed, it is quite natural to consider one state, for example, state 0 to model 
the normal economic and financial environment; then we can add a supplementary 
state –1 to represent an abnormal situation like a crash or a doped situation. 
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With three states, we can separate the crash possibility represented by state –1 
from the doped situation represented by state 1, state 0 always being the normal 
case. 

Example 15.1 A two-state model 

As stated just above, let the state set be: 

0,1I   (15.32) 

with state 0 as the normal economic and financial situation environment and state 1 
as the exceptional in the sense of, for example, a crash or doped situation. 

 
Numerical data are the following: 

(0.95,0.05),

0.98 0.02 1.03 1.05
, ,

0.60 0.4 1.05 1.03

1.3 1.1. 0.7 0.5
, .

1.06 1.2 0.4 0.6

a

P

U D

 (15.33) 

Example 15.2 A three-state model 

Here, let the state set be: 

1,0,1 .I   (15.34) 

State 0 represents the normal economic and financial situation environment, state 
–1 the exceptionally bad situation in the sense of, for example, a crash situation and 
state 1 as exceptionally good as a doped effect of the Stock Exchange, for example. 

 
Numerical data are the following: 

(0.05,0.90,0.05),

0.6 0.3 0.1 1.05 1.03 10.2

0.02 0.96 0.02 , 1.05 1.03 10.2 ,

0.6 0.35 0.05 1.06 1.04 10.3

1.07 1.10 1.20 0.5 0.7 0.8

1.07 1.10 1.20 , 0.6 0.7 0.8

1.07 1.09 1.15 0.65 0.7 0.8

a

P

U D .

 (15.35) 
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For both examples, we will consider a European call option with 

0S 100 and K 80 and 95.  
 
Results are given in Table 15.1. 
 

S 100           

K 95           

            

Example 1            

            

transition A1 a2 a3 p(ij) r(ij) u(ij) d(ij) q(ij) Cij(100,1) Ci(100,1) C(100,1) 

            

0 to 0 0.95 0.05  0.98 1.03 1.3 0.7 0.55 2.6699 2.7038  

0 to 1    0.02 1.05 1.1 0.5 0.9167 4.3651   

            

1 to 0    0.6 1.05 1.06 0.4 0.9848 4.6898 4.2054  

1 to 1    0.4 1.03 1.2 0.6 0.7167 3.4790   

           2.7789 

Example 2            

            

 0.05 0.9 0.05         

            

bad to bad    0.6 1.05 1.07 0.5 0.9649 4.5948 4.2280  

bad to normal    0.3 1.03 1.1 0.7 0.825 4.0049   

bad to good    0.1 1.02 1.2 0.8 0.55 2.6961   

            

normal to bad    0.02 1.05 1.07 0.6 0.9574 4.5594 4.3275  

normal to 
normal 

   0.96 1.03 1.07 0.7 0.8919 4.3296   

normal to good    0.02 1.02 1.07 0.8 0.8148 3.9942   

            

good to bad    0.6 1.02 1.2 0.65 0.6727 3.2977 3.2361  

good to normal    0.35 1.02 1.2 0.7 0.64 3.1373   

good to good    0.05 1.03 1.15 0.8 0.6571 3.1900   

           4.2679 

Table 15.1. European call option examples 
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15.1.2. The multi-period discrete Markov chain model 

Let us now consider a multi-period model over the time interval 0, n , n being 
an integer larger than 1, always under the assumption of absence of arbitrage. 

 
To obtain useful results, we will still follow the fundamental presentation of the 

CRR model (Cox, Rubinstein (1985)) but adapted for our Markov environment in 
such a way that tractable results may be found: 

1) result with knowledge of 0 ,..., nJ J  

Let us begin with a discrete time model with n periods and suppose that given 

0 0,..., , (0)nJ J S S  with 0 , ,nJ i J j  the up and down parameters, the non-
risky interest rate and the probabilities of an up movement for each period are the 
same for all periods and given respectively by , ,ij ij iju d r  and ijq . 

 
Then, the asset value S(n) at time n is given by: 

0 1 1 0( )
n nj j j jS n V V S   (15.36) 

where the conditional distributions of the random variables V are defined as: 

1

with probability

with probability

   ,
, .

   1- ,n n

ij ij

J J
ij ij

u q
V i j I

d q
 (15.37) 

Moreover, we suppose that, for each n, the random variables 
0 1 1

,...,
n nJ J J JV V  are 

conditionally independent given 0 ,..., nJ J . 
 
If the random variable nM  represents the total number of up movements on 

0,n , the asset value at time n is given by: 

0( ) ( ) ( )n nM n M
ij ijS n u d S   (15.38) 

and consequently: 

0

( )
ln ln ( )ln .n ij n ij

S n
M u n M d

S
 (15.39) 
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Given 0 0 0,..., , (0)n nJ j J j S S , the conditional distribution of nM  is a 
binomial distribution with parameters ( , )ijn q . It follows that: 

0 0 0
0

( )
ln ,..., , (0) ( ln (1 )ln )n n ij ij ij ij

S n
E J j J j S S n q u q d

S
. (15.40) 

Concerning the conditional variance, we obtain: 

2

0 0 0
0

( )
var ln ,..., , (0) (1 ) ln .ij

n n ij ij
ij

uS n
J j J j S S n q q

S d
 (15.41) 

Choosing now for the up probability on the n periods, the risk neutral probability 
given by relation (15.10): 

1 1

1

1 1

ij ij
ij

ij ij

r d
q

u d
,  (15.42) 

it is clear that, under our assumptions, for each n, given 0 0,..., , (0)nJ J S S  with 

0 , ,nJ i J j  we have a CRR model, so that their results recalled in the beginning  
of this chapter concerning the European call are valid. Consequently, we obtain the 
value of the European call with exercise price and maturity n as the present value of 
the expectation of the “gain” at time n under the risk neutral measure, that is: 

0 0 1

0
0

( ,0 , ,..., )

1
(1 ) max .

n

n
k n k k n k
ij ij ij ijn

kij

C S J i J J j

n
q q u d S K

k

 (15.43) 

After some calculation, we can obtain the following expression (see Cox and 
Rubinstein (1985)): 

0 0 1

0

( , , ,..., )

( ; , ' ) ( ; , ),  if ,

0                                                 if ,

n

ij ij ij ij ijn
ij

ij

C S n J i J J j

K
S B a n q B a n q a n

a n

 (15.44) 
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where ( ; , )B x m  is the value of the complementary binomial distribution function 
complementary with parameters ,m at point x  and 

0ln( / )
1 ,

ln( / )

' .

n
ij

ij
ij ij

ij
ij ij

ij

K d S
a

u d

u
q q

r

  (15.45) 

Result (15.44) can be seen as the discrete time extension of the Black and 
Scholes formula given the environment: 

0 0,..., , (0)nJ i J j S S .  (15.46) 

2) result with knowledge of 0J i  

If we only know the initial state of the environment 0J i , it is clear that the 
value of the call is given by 

( )
0 0

1

( , ) ( , )
m

n
i ij ij

j

C S n p C S n   (15.47) 

where, of course: 

( ) .n n
ijp P   (15.48) 

3) result with knowledge of nJ j  

Proceeding as in the previous section, the use of the Bayes formula provides the 
following result, now on n periods instead of one: 

0
0

( )

( )

0

,

                          

n
n

n

n
i ij

m
n

k kj
k

P J i J j
P J i J j

P J j

a p

a p

 (15.49) 
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and so the value of the call given nJ =j, represented by 0( , )jC S n , is given by: 

( )

0 0
( )1

0

( , ) ( , ).
nm

i ijj
ijm

ni
k kj

k

a p
C S n C S n

a p
 (15.50) 

4) result with no environment knowledge 

Finally, if we have no knowledge on the initial environment state but know its 
probability distribution given by (15.1), the value of the call denoted 0( , )C S n is 
given by 

0 0
1

( , ) ( , )
m

i i
i

C S n a C S n   (15.51) 

or by 

( )
0 0

1 1

( , ) ( , ).
m m

n j
k kj

j k

C S n a p C S n  (15.52) 

15.1.3. The multi-period discrete Markov chain limit model 

To construct our continuous time model on the time interval [0,t], let us begin to 
consider a multi-period discrete Markov chain model with n periods, where each 
period has length h so that we have equidistant observations at time 0,h,2h,...,nh 
with /n t h . 

 
We also assume that in the approximated discrete time model, the environment 

process is a homogenous ergodic Markov chain defined by relations (15.1) and 
(15.2) and that (see Cox and Rubinstein (1985)), for each n, given 

0 0,..., , (0)nJ J S S  with 0 , ,nJ i J j  we select, in each subinterval 
,( 1)kh k h , the following up and down parameters: 

1 1

1

, ,

1 1
,

2 2

ij ij

k k k k

k k

t t

n n
j j j j

ij
j j

ij

u e d e

t
q

n

  (15.53) 
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thus depending on the two m m  non-negative matrices: 

,ij ij .  (15.54) 

From relations (15.40) and (15.41), it follows that, for all n: 

0 0 0
0

( )
ln ,..., , (0) ,n n ij

S n
E J j J j S S t

S
 (15.55) 

2
0 0 0

0

( )
var ln ,..., , (0) .n n ij

S n
J j J j S S t

S
 (15.56) 

As our conditioning implies that we can follow the reasoning of Cox and 
Rubinstein (1985), we know that, for n : 

2

0

( )
ln ( , ),ij ij

S t
N t t

S
   (15.57) 

where j0 = i as the initial environment state observed at t = 0 and j the environment 
state at time t. 
 

Concerning the non-risky interest rates, we also suppose that, for all i and j, there 

exists 1ij  such that the new return rate for all the periods ,( 1) )kh k h , 

denoted îjr , for n , satisfies the following condition: 

ˆ(1 ) (1 )n t
ij ijr r .  (15.58) 

Now let 0( , )ijC S n represent the value at time 0 of a European call option with 
maturity n and exercise price K. 

 
Using the proof of the Black and Scholes formula given by Cox and Rubinstein 

(1985)) but with our parameters depending on all on the environment states i and j, 
we obtain under conditions (15.53) and (15.58), for fixed t: 

0 0( , ) ( , )ij ijC S n C S t   (15.59) 



Markov and Semi-Markov Option Models     621 

where: 

0 0 1 ,2

0
1

,1

,2 ,1

( , ) ( ) ( ),

ln
1

,
2

.

t t

t

t

t
ij ij ij ij

ij
ij ij

ij

ij ij ij

C S t S d Kr d

S

Kr
d t

t

d d t

 (15.60) 

This result gives the value of the call at time 0 with i as the initial environment 
state and j as the environment state observed at time t, represented from now by tJ . 

 
If we want to use the traditional notation in the Black and Scholes (1973) 

framework, we can define the instantaneous interest rate intensity ij  such that: 

ij

ijr e   (15.61) 

so that the preceding formula (15.60) now becomes: 

0 0 1 ,2

2

,1

,2 ,1

( , ) ( ) ( ),

1
ln ,

2

.

ij

t t t

t

t

t

ij ij ij

ij
ij ij

ij

ij ij ij

C S t S d Ke d

S
d t

Kt

d d t

 (15.62) 

15.1.4. The extension of the Black-Scholes pricing formula with Markov 
environment: the Janssen-Manca formula  

The last result (15.62) gives a first extension of the Black and Scholes formula in 
continuous time from the knowledge of the initial and final environment states, 
respectively 0J  and tJ  where tJ  represents, as stated above, the state of the 
environment at time t. 

 
Now, always with the assumption that the Markov chain with matrix P is 

ergodic, we can extend results (15.44), (15.50) and (15.52) valid for our discrete 
multi-period model to our continuous time model, thus giving the following main 
result. 
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Proposition 15.1 (Janssen and Manca (1999)) 

Under the assumption that the Markov chain of matrix P of the environment 
process is ergodic and given that the initial environment state i I  and the 
environment state at time t is j I , the non-risky rate is given by ij  and the 
annual volatility by ij , then we have the following results concerning the 
European call price at time 0 with exercise price K and maturity t: 

(1) with knowledge of state 0 , tJ i J j , the call value is given by result 
(15.62), 

(2) with knowledge of state 0J i , the call value represented by 0( , )iC S t  is 
given by: 

0 0
1

( , ) ( , ),
m

i j ij
j

C S t C S t   (15.63) 

(3) with knowledge of state tJ j , the call value represented by 0( , )jC S t  is 
given by: 

0 0
1

( , ) ( , ),
m

j
i ij

i

C S t a C S t   (15.64) 

(4) without any environment knowledge, the call value represented by 
0( , )C S t  

is given by: 

0 0
1

( , ) ( , )
m

i i
i

C S t a C S t   (15.65) 

or 

0 0
1

( , ) ( , )
m

j
j

j

C S t C S t .  (15.66) 

Proof Result (1) is proved in the previous section. 
 

Result (2) follows from relation (15.47), letting n go to  and then using 
result (1) and the assumption of ergodicity on the environment matrix chain P. 

 
Result (3) can easily be deduced from result (2) and relation (15.50). 
 
Finally, result (4) follows immediately from relations (15.51) or (15.52) and 

results (2) and (3).   
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Example  

Examples 15.1 and 15.2 of the preceding section are covered in Table 15.2 
where “?” means “unknown”. 

 
Example 1     

K 80  K 80 
S 100  S 100 

0 to 0   0 to 0  
 t Cij(100,t) t Cij(100,t) 
 0.25 22.18 0.25 11.84 
 0.5 24.87 0.5 15.69 
 0.75 27.24 0.75 18.7 
 1 29.35 1 21.26 
     

1 to 0 0.25 22.01 0.25 11.18 
 0.5 24.54 0.5 14.86 
 0.75 26.83 0.75 17.8 
 1 28.91 1 20.32 
     

? to 1 0.25 21.57 0.25 10.17 
 0.5 23.64 0.5 13.42 
 0.75 25.61 0.75 16.03 
 1 27.43 1 18.29 
     

? to ? 0.25 22.11 0.25 11.31 
 0.5 24.35 0.5 14.54 
 0.75 26.58 0.75 17.43 
 1 28.62 1 19.93 

Table 15.2. Janssen Manca option model results 

In conclusion, the Janssen-Manca approach gives for the first time a new family 
of Black and Scholes formulae taking into account the economic and social 
environment showing that: 

– a “good” extension of the traditional Cox Rubinstein model is possible; 

– the model also extends the Black and Scholes model; 

– numerical results are possible. 
 
Moreover, as the Janssen-Manca formulae are linear combinations of the 

traditional Black-Scholes results, the Greek parameters can also be calculated and 
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will be linear combinations of the Greek parameters given in section 14.6 and 
similarly for hedging coefficients. 

We also add that, from our point of view, one of the main potential applications of 
our new model concerns the possibility of obtaining a new way of using the Black and 
Scholes formula with information related to the economic, financial and even political 
environment, provided it can be modeled by an ergodic homogenous Markov chain. 

 
This model also provides the possibility of taking into account anticipations 

made by the investors in such a way as to incorporate them in their own option 
pricing and can also be used for models with financial crashes as well as to construct 
scenarios, and particularly in the case of stress in a VaR type approach. 

15.2. The extension of the Black-Scholes pricing formula with a semi-Markov 
environment: the Janssen-Manca-Volpe formula (Janssen and Manca (2007)) 

15.2.1. Introduction 

In this section, we present the semi-Markov (SM) extension of the Black and 
Scholes formula to the Janssen-Manca-Volpe model to eliminate one of the 
restrictions of the Black and Scholes model, that is, the assumption of constant 
volatility over time. 

 
There have been many attempts to slacken this condition, as for example in the 

model of Hull and White (1985) where the concept of stochastic volatility is 
introduced, but to our knowledge, in practice, no generalized model really supplants 
the traditional Black and Scholes model. 

 
Whilst comparing the Markovian Janssen-Manca model of the preceding section, 

we developed another type of model. More precisely, we present new semi-Markov 
models for the evolution of the volatility of the underlying asset. 

 
In fact, the SM model presented here assumes a type of SM evolution for the 

volatility of an initial Black-Scholes model presented at the ETH Zurich (1995) by 
Janssen, and in a different approach by E. Çinlar at the First Euro-Japanese meeting 
on Insurance, Finance and Reliability held in Brussels in 1998 which led to a 
generalization of the traditional Black and Scholes formula for the pricing of 
European calls with easy numerical applications. 



Markov and Semi-Markov Option Models     625 

15.2.2. The Janssen-Manca-Çinlar model 

The semi-Markov extension of the Black and Scholes model assumes a type of 
SM evolution for the volatility of an initial Black and Scholes model presented by 
Janssen (1995) and, more recently, in a different approach by Çinlar (1998). 

Hereby, we present Janssen’s initial model which is similar to the presentation of 
Çinlar, however he provides the formula for the pricing of a call option using the 
Markov renewal theory. 

15.2.2.1. The JMC (Janssen-Manca-Çinlar) semi-Markov model (1995, 1998) 

Let us consider a two-dimensional positive (J-X) process of kernel Q with state 
space: 

1,..., .I m   (15.67) 

This means that on the probability space , ,P , we define the three-
dimensional process 

, ( , ) , 0n n nJ X n   (15.68) 

with: 

,( , ) ,n n nJ I X   (15.69) 

such that: 

1

, , , ( , ) , 0.1..... 1

( , ), . .
n

n n n k k k

J j

P X x J j J X k n

Q x p s
 (15.70) 

We know that the , ,ijQ i j I  can be written in the following form: 

( , ) ( , )ij ij ijQ x p F x   (15.71) 

where: 

1, 1,ij n k np P J j J k n J i , (15.72) 

1( , ) , ( ,( , )), 1, .ij n n k k k nF x P X x J X k n J i  (15.73) 
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We also introduce the following r.v.: 

1

( )

, 0,

( ) sup : , 0,

( ) , 0.

n n

n

N t

T X X n

N t n T t t

Z t J t

  (15.74) 

As usual, the transition probability for the process ( ), 0Z Z t T  is designed 
by: 

( ) ( ) ( )ij t P Z t j Z t i   (15.75) 

and the stochastic processes ( ( ), ),( ( ), )N t t Z t t  are respectively the 
Markov renewal counting and the semi-Markov processes. 

 
To give the financial interpretation of our model, let us define on the probability 

space , , P , the following filtration ( , )t t , 

(( , ( , )), ( )).t n n nJ X n N t   (15.76) 

Given t , let us consider the random time interval ( ) ( ) 1,N t N tT T  on which we 
define the new stochastic process ( ( ), )S t t , representing the value of the 
considered financial asset, as the solution of the stochastic differential equation: 

( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1
( ) ( ) ( ) 1

( ) ( )

' ( ' ), ' , , 
( ')

(  )  ( -),

N t N t N t N t J JN t N t
J J J J N t N t N t

N t N t

dS
dt dW t T t T T

S t

S T S T

(15.77) 

where process 
( ) ( ) 1

( ( '), ' 0)
J JN t N t

W t t  is a standard Brownian motion on 

( ) ( ) 1,N t N tT T  defined on the basic probability space stochastically independent on 

( ) ( ),N t N tJ X . 

 
This model has the following financial interpretation: at t = 0, the asset starts 

from the known initial value 0S , with the known initial j-state 0J  representing the 
state of the initial economic and financial environment. On the time interval 1X , the 
asset has the random volatility 1  and has as stochastic dynamics the SDE (15.77) 
with t = 0; at time 1X , the J process has a transition to state 1J and on the time 
interval 1 2,T T , the asset has the random volatility 2  and has as stochastic 
dynamics the SDE (15.77) with N(t) = 1, etc. 
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We always define 0 0,  a.s.X  
 
So, it is now clear that we have in fact a disrupted Black and Scholes model due 

to this random change of volatility; note that this model is quite general as, in fact, 
we have a random volatility on each time interval ( ) ( ) 1,N t N tT T . 

 
Of course, for m = 1, we recover the traditional Black-Scholes-Samuelson model 

for the description of an asset. 

15.2.2.2. The explicit expression of S(t) 

Given ( ) ( ) 1,N t N tJ J , the Itô calculus gives the solution of the SDE (15.77): 

2

( ) ( ) 1
( ) ( ) 1

( )( ) ( ) 1

'
2 ( ' )

( )

( ) ( ) 1

 ( ') ,

' , .

J JN t N t
J JN t N t

J J N tN t N t

t
W t T

N t

N t N t

S t S e e

t T T

 (15.78) 

Starting from state 0S  at time 0 and given a scenario for the economic and 
financial environment 0 1( , , ..., , ...)nJ J J , this expression gives the explicit form of 
the trajectories of the process ( ( ), 0).S t t  

 
Now, given ( 0 0 1 1 ( ) ( ) ( ) 1 ( ) 1, , , , ..., , , ,N t N t N t N tJ X J X J X J X ), from relation 

(15.78), we obtain: 

( ) ( ) 1

( ) ( ) 1 ( ) ( ) 1

2

( )
( )

( ) ( ) 1

( ')
 ln = ) ' ' ,

2

' , ,

J JN t N t

N t N t N t N tJ J J J N t
N t

N t N t

S t
t W t T

S

t T T

 (15.79) 

so that for ( ) ( ) 1' ,N t N tt T T : 

( ) ( ) 1

( ) ( ) 1

( ) ( ) 1

2

( )
( )

2
( )

( ')
 ln ( ' ),  

2

( ' ).

J JN t N t

N t N t

N t N t

J J N t
N t

J J N t

S t
N t T

S

t T

 (15.80) 

, ( )( ) ( ) 1
( ' )

( ) 1
( )

( )
, ,J J N tN t N t

t T

t N t
N t

S t
E J e

S
 (15.81) 
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2
, ( ) ( )( ) ( ) 1 ( ) ( ) 1

2 ( ' )  ( ' )

( ) 1
( )

( )
var , 1J J N t J J N tN t N t N t N t

t T t T

t N t
N t

S t
J e e

S
. (15.82) 

Let us suppose that the random variables  

0 0 1 1 ( ) ( ) 1 ( ) 1, , , , ..., , ,N t N t N tS J X J J X J  

are given; it follows that the conditional distribution function of 
0

( )S t

S
 is a 

lognormal distribution, i.e.: 

0 1 ( ) ( ) 1 ( ) ( ) 10 1

0

2 2
1 ( ) 1 ( )

( )
ln

( ), ( ) .
N t N t J J N t N tJ J J J N t J J N t

S t

S

N X t T X t T

 (15.83) 

15.2.3. Call option pricing 

Now to obtain a useful model, let us proceed as in Janssen and Manca (1999); 
for a fixed t, we assume that all the parameters ,  only depend on 

0 ( ) ( ) 1, ,N t N tJ J J , and t is represented by  

0 ( ) ( ) 1 0 ( ) ( ) 1
,

N t N t N t N tJ J J J J J   (15.84) 

so that from relation (15.83): 

0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1

2 2

0

( ) 1
ln , .

2N t N t N t N t N t N tJ J J J J J J J J

S t
N t t

S
 (15.85) 

Of course, we can always simplify our basic assumption by suppressing the 
dependence with respect to ( ) 1N tJ  and even to ( )N tJ . 

 
Nevertheless, we think that the dependence from the future environment state 

( ) 1N tJ  is quite important as it gives for the first time the possibility of modeling the 
stochastic asset evolution taking into account this anticipation of the next future 
state. 

 
Let us now consider a European call option with t as the maturity time, and K as 

the exercise price that we must price at time 0. 
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If we want to assume that there is no arbitrage possibility, we must impose that  

0 ( ) ( ) 1 0 ( ) ( ) 1N t N t N t N tJ J J J J J   (15.86) 

where 
0 ( ) ( ) 1N t N tJ J J  represents the equivalent instantaneous non-risky return on [0,t] 

given 0 ( ) ( ) 1, ,N t N tJ J J . Doing so, we will use the risk-neutral measure under which 

the forward value of the asset is a martingale, otherwise we work with the initial 
“physical” measure more appropriate for insurance than for finance. 
 

Knowing 0 ( ) ( ) 1, ,N t N tJ J J  and working with the risk neutral measure, we can 
calculate the value of the call at time 0 using the traditional Black and Scholes 
formula: 

0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1

0 ( ) ( ) 1

0 ( ) ( ) 1 0 ( ) ( ) 1

0 ( ) ( ) 1

0 ( ) ( ) 1 0 ( ) ( ) 1 0

0 0 ,1 ,2

0
1

,1

,2 ,1

( , ) ( ) ( ),

ln
1

,
2

N t N t N t N t N t N t N t N t

N t N t

N t N t N t N t

N t N t

N t N t N t N t

t
J J J J J J J J J J J J

J J J

J J J J J J

J J J

J J J J J J J J

C S t S d Kr d

S

Kr
d t

t

d d
( ) ( ) 1

0 ( ) ( ) 1

0 ( ) ( ) 1

,

.

N t N t

J J JN t N t

N t N t

J

J J J

t

e

 (15.87) 

To obtain the formula of the call only knowing 0 0,S J , we must use the 
following formula: 

0 0 ( ) ( ) 1 0 0 0( ) ( , ) , .
N t N tJ J J JC t E C S t J S  (15.88) 

From the theory of semi-Markov processes, we obtain: 

0 0 ( ) ( ) 1

0 0 0

0 0 0

0

( ) ( , ) , ,

( ) ( ) ( , ).

N t N tJ J J J

J J j jk J jk
j I k I

C t E C S t J S

C t P t p C S t
 (15.89) 

If we have no information about the initial state 0J , we of course obtain the 
following formula: 
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0 0 ( ) ( ) 1 0 0 0( ) ( ) ( , ) , ,

( ) ( ).

N t N tJ J J J

i i
i I

C t E C t E E C S t J S

C t a C t
 (15.90) 

Remark 15.1 Numerical treatments are possible. 

15.2.4. Stationary option pricing formula 

In option pricing, it is nonsense to let t tend towards ; nevertheless, we can 
use the limit reasoning proposed by Janssen by supposing that on the time horizon 
[0,t], the semi-Markov environment has more and more transitions in this finite time 
period. 

 
We can model this situation under the assumption that the conditional sojourn 

time means that , ,ijb i j I  satisfy the conditions 

,

1

 0,

,

ij ij

ij n n n

b

b E X J i J j
  (15.91) 

so that: 

, ,

.

i ij ij ij ij i
j I j I

i ij ij
j I

p b p i I

p
 (15.92) 

From the asymptotic theory of semi-Markov processes, we know that: 

( ) ( ) 1
0

1

lim , , , ,i jk jk
N t N t m

l l
l

p
P J j J k i j I  (15.93) 

where the vector 1 ,..., m  is the unique stationary distribution of the embedded 
Markov chain of matrix P assumed to be ergodic. 
 

The new parameters ,  , ,jk i j k I  represent factors expressing the 
proportionality of the sojourn in each environment state. 

 
Now result (15.89) becomes: 
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0 0 0

1

( ) ( , ).j jk jk
J J jkm

j I
l l

l

p
C t C S t

k I
 (15.94) 

From (15.90), we obtain 

0

1

( ) ( , ).j jk jk
i ijkm

i I j I
l l

l

p
C t a C S t

k I
 (15.95) 

This last formula replaces the Black and Scholes formula without any a priori 
information at time 0 except of course the initial value of the asset 0S . 

 
In conclusion, the new model proposed here extends the traditional Black and 

Scholes formula in the case of the existence of an economic and financial 
environment modeled with a homogenous semi-Markov process taking into account 
this environment not only at the time of pricing but also before and after the 
maturity date. 

 
This new family of Black and Scholes formulae seems to be more adapted to the 

reality, particularly when taking into account the anticipations of the investor or the 
consideration of stress scenario in the philosophy of the VaR approach. 

15.3. Markov and semi-Markov option pricing models with arbitrage 
possibility  

The aim of this last part is the presentation of new models for option pricing, 
discrete in time and within the framework of Markov and semi-Markov processes as 
an alternative to the traditional Cox-Rubinstein model and giving arbitrage 
possibilities. Both cases of European and American options are considered and 
possible extensions are given. 

15.3.1. Introduction 

Let us consider an asset observed on a discrete time scale  

0,1,..., , ... ,t T T   (15.96) 

having S(t) as market value at time t. To model the basic stochastic process 
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(S(t), t = 0,1,...,T),  (15.97) 

we suppose that the asset has known minimal and maximal values so that the set of 
all possible values is the closed interval min max[ , ]S S  partitioned in a subset of m 
subclasses. 

For example, if S0 is the value of the asset at time 0, we can put: 

max min
0

0

0

max min

,
2

, 1,..., ,

, 1,..., ,

,
2

k

k

S S
S

S S k k

S S k k

S S

  (15.98) 

 being arbitrarily chosen. 
 
This implies that the total number of states is 2 1. In the following, we will 

order these states in the natural increasing order and use the following notation for 
the state space: 

{ , ( 1),...,0,1,..., }.I   (15.99) 

We can also introduce different step lengths following up or down movements 
and so consider respectively , '.  

 
It is also possible to let  

maxS   (15.100) 

and 

T   (15.101) 

particularly to obtain good approximation results. 
 
Let us suppose we want to study a call option of maturity T and exercise price 

K= 0k  in both European and American cases bought at time 0. 
 
So, in the European case, the intrinsic value of the option is given by: 

( ) max{0, ( ) }.C T S T K   (15.102) 
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For the American case, the optimal time for exercising is given by the random 
time  such that: 

1,...,
max max{0, } max{0, ).t
t T

S K S K  (15.103) 

To obtain results, we must now introduce in the following section a stochastic 
model for the S-process. 

15.3.2. The homogenous Markov model for the underlying asset 

Let us suppose that we are working on the filtered probability space 
( , , ( ) )t P . 

 
In our first model, we will suppose that the underlying asset S is a homogenous 

Markov chain with matrix: 

ijpP   (15.104) 

on the state space I given by relation (15.99). 
 
It follows that, at time t, given the knowledge of the asset value ( ) tS t S , the 

market value of the option at time t, C(t), thus with a remaining maturity T-t and 
exercise price K given by 

0 ,K k  has as the probability distribution: 

0

( )
0 , 0

( )
,

( ( ) ( ) ) , ,

( ( ) 0) .

T t
S j

T t
S j

l k

P C T j k p j k

P C T p
 (15.105) 

This result gives the possibility to calculate all interesting parameters concerning 
C. For example, the mean of C(t) has the value: 

0

( )
, 0( ( ) ( ) ) ( ) .T t

t S j
l k

E C T S t S p l k
 (15.106) 

Of course, we have to calculate the present value at time t with the non-risky unit 
period interest rate r so that the value of the call at time t is given by: 

0

( )
, 0( ) ( ( ) ( ) ) ( ) ,

1
.

1

T t T t T t
t S j

l k

C t v E C T S t S v p l k

v
r

 (15.107) 
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If matrix P is ergodic, then if T-t is large enough, results (15.105) and (15.106) 
can be well approximated by: 

0

0

0

0 0

0

0

0

( ( ) ( ) ) , ,

( ( ) 0) , ,

( ( ) ( ) ) ( ) ,

( ) ( ) .

j

l
l k

t j
l k

T t
j

l k

P C T j k j k

P C T j k

E C T S t S l k

C t v l k
 (15.108) 

Of course, the vector 

0( ,..., ,..., )   (15.109) 

is the steady-state vector related to the matrix P. 

15.3.3. Particular cases 

As we stated in our introduction, our homogenous Markov model contains as a 
very special case the famous CRR binomial model but with fixed minimal and 
maximal values. It suffices to select a Markov matrix P with the structure 

* * 0 0 0 0 0 0

* 0 * 0 0 0 0 0

0 * 0 * 0 0 0 0

0 0 * 0 0 0 0 0

0 0 0 0 0 * 0 0

0 0 0 0 * 0 * 0

0 0 0 0 0 * 0 *

0 0 0 0 0 0 * *

  (15.110) 

and as the Cox-Rubinstein model has a multiplicative form, we can consider that: 

0 0

0 0

( 1) , 1, ,

(1 ) , 1, .

u S u S S

d S d S S
  (15.111) 

Remark 15.2 Under (15.100), matrix P has an infinite number of rows and columns. 
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We can also obtain the trinomial model if we put in (15.110) a non-zero main 
diagonal, etc. 

15.3.4. Numerical example for the Markov model 

To numerically illustrate our first model, let us suppose that we are interested in 
an asset whose possible values are restricted to the following ones: 

– maximum value: state 3 = 1,650; 

– intermediary values: state 2 = 1,600, state 1 = 1,550, state 0 = 1,500; 

– state –1 = 1,450, state –2 = 1,400; 

– minimum value: state –3 = 1,350. 
 
With the used notation, this means that 0 1,500, 50.S  Moreover, we also 

suppose that the transition matrix P, with the week as unit step, is given by 

1 1 1 1
0 0 0

6 3 3 6
1 1 1 1 1

0 0
3 6 6 6 6
1 2 1 1 1 1

0
7 7 7 7 7 7

1 1 1
0 0 0 0

2 4 4
2 3 1 1

0 0 0
7 7 7 7
1 2 2 1 1

0 0
7 7 7 7 7

1 1 1 1
0 0 0

2 4 8 8

  (15.112) 

It is easily seen that matrix P is ergodic with as unique stationary distribution: 

(0.10002, 0.13336, 0.27228, 0.23737, 0.16927, 0.07539, 0.01231). 

Then, starting at time 0 in state 1,500 with a maturity time of 16 weeks, the 
asymptotic value of the European call option expectation with 1,500 as exercise 
price is 41.95 and the call value at time 0 is 41.328.  

Table 15.3 gives option expectations and option values with different exercise 
prices.  
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Exercise price Option expectation Option value 

1,350 174.106 171.512 

1,400 124.721 122.826 

1,450 79.1059 77.927 

1,500 41.9538 41.328 

1,550 16.6704 16.422 

1,600 5.00113 4.927 

1,650 0 0 

 
Table 15.3. Markov option calculation 

Let us now consider the transient behavior, meaning that we will consider the 
maturity as a parameter expressed in n weeks. Table 15.4, gives option expectations, 
Table 15.5 option values with as exercise price 1,500 and for different maturity 
times from 1 to 16 weeks.  

 

 STATE 

n -3 -2 -1 0 1 2 3 

1 75.00 75.00 57.14 25.00 14.29 7.14 0.00 

2 60.71 53.57 46.93 38.39 30.10 20.41 16.96 

3 50.02 48.40 43.39 40.60 37.08 31.61 31.39 

4 45.70 44.92 42.79 41.11 39.61 37.39 37.44 

5 43.70 43.30 42.35 41.57 40.84 39.87 39.81 

6 42.76 42.58 42.13 41.78 41.45 40.98 40.96 

7 42.33 42.24 42.04 41.87 41.72 41.50 41.50 

8 42.13 42.09 41.99 41.92 41.84 41.75 41.74 

9 42.03 42.02 41.97 41.94 41.90 41.86 41.86 

10 41.99 41.98 41.96 41.95 41.93 41.91 41.91 

11 41.97 41.97 41.96 41.95 41.94 41.93 41.93 

12 41.96 41.96 41.96 41.95 41.95 41.94 41.94 

13 41.96 41.96 41.95 41.95 41.95 41.95 41.95 

14 41.96 41.96 41.95 41.95 41.95 41.95 41.95 

15 41.95 41.95 41.95 41.95 41.95 41.95 41.95 

16 41.95 41.95 41.95 41.95 41.95 41.95 41.95 

Table 15.4. Option expectation 

 



Markov and Semi-Markov Option Models     637 

 STATE 
n –3 –2 –1 0 1 2 3 
1 70.93 74.93 57.09 24.98 14.27 7.14 0.00 
2 60.60 53.47 46.85 38.32 30.05 20.37 16.93 
3 49.88 48.27 43.26 40.48 36.98 31.53 31.31 
4 45.53 44.75 42.63 40.26 39.45 37.25 37.30 
5 43.50 43.10 42.15 41.38 40.65 39.68 39.63 
6 42.22 42.34 41.90 41.54 41.21 40.75 40.73 
7 42.05 41.97 41.76 41.60 41.45 41.23 41.22 
8 41.81 41.77 41.68 41.60 41.53 41.43 41.43 
9 41.68 41.66 41.62 41.58 41.55 41.51 41.50 

10 41.60 41.59 41.57 41.55 41.54 41.52 41.52 
11 41.54 41.54 41.53 41.52 41.51 41.50 41.50 
12 41.49 41.49 41.49 41.48 41.48 41.47 41.47 
13 41.45 41.45 41.45 41.44 41.44 41.44 41.44 
14 41.41 41.41 41.41 41.41 41.41 41.41 41.40 
15 41.37 41.37 41.37 41.37 41.37 41.37 41.37 
16 41.33 41.33 41.33 41.33 41.33 41.33 41.33 

Table 15.5. Option value 

15.3.5. The continuous time homogenous semi-Markov model for the underlying 
asset 

With the generalization of electronic trading systems, it seems more adaptive to 
construct a time continuous model for which the changes in the values of the 
underlying process may depend on the time it remained unchanged before a transition. 

 
Also, let  

(( , ) 0,1,...)n nS T n   (15.113) 

be the successive states and time changes of the considered asset. 
 
The Janssen-Manca semi-Markov continuous model without AOA starts from 

the basic assumption that process (15.113) is a semi-Markov process of kernel Q. 
 
It follows that, at time t in state S(t) = St, the market value of the considered 

European option with maturity T – t has as probability distribution at maturity time  
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0

0 0

0

( ( ) ( )) ( ), ,

( ( ) 0) ( ), .
t

t

S j

S j
l K

P C T j k T t j k

P C T T t j k  (15.114) 

Of course, matrix ( )t  represents the transition probabilities for the considered 
semi-Markov process (see  relation (12.101)). 

 
This result gives the possibility to calculate all interesting parameters concerning 

C. For example, the mean of C(T) has the value: 

0

0( ( ) ( ) ) ( )( ) .
tt S j

j k

E C T S t S T t j k  (15.115) 

The pricing of the option at time t is here given by the conditional market value C(t): 

0

0( , ) ( )( )
t

T t
t S j

j k

C S t v T t j k  (15.116) 

which is the Janssen-Manca-Di Biase formula for the considered semi-Markov model. 
 

If the semi-Markov process is ergodic, then, if (T – t) is large enough, results 
(15.114) can be well approximated by: 

0

0 0

0

( ( ) ( )) , ,

( ( ) 0) , .

j

l
l K

P C T j k j k

P C T j k   (15.117) 

The stationary version of the Janssen-Manca-Di Biase formula is thus given by 

0

0( , ) ( ) .
t

T t
t j S j

j k

C S t v j k  (15.118) 

Of course the vector 1( , ..., )m  is the asymptotic distribution of the embedded 
semi-Markov process given by relation (12.15) . 
 

Formally the evaluation of assets is continuous, but substantially is given in the 
discrete case; furthermore, the numerical solution of a continuous time semi-Markov 
process causes problems of numerical and stochastic convergence. For these 
reasons, it may be useful to deal with our problem with the discrete time 
homogenous semi-Markov process as introduced in Janssen and Manca (2007). 
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15.3.6. Numerical example for the semi-Markov model 

We will only provide a numerical example for the semi-Markov model in the 
asymptotic case, i.e. values of the option expectation and of the options for large 
maturities. 

We merely need as supplementary information, the conditional mean sojourn 
times given by relations (12.25). The used values are given by the following matrix 

: 

1 1
1 2 1 1 1

2 2
1 1

1 1 2 1 1
4 4

1
2 1 1 2 2 1

2
1 1

1 1 1 1 1
2 2

1 1
1 1 1 2 1

2 2
1 1

1 1 2 1 2
2 2
1 1 1

1 1 1 1
2 3 3

.  (15.119) 

In this case, the asymptotic distribution for the semi-Markov process is: 

(0.09487, 0.12650, 0.38238, 0.15352, 0.15013, 0.08358, 0.00902). 

Then, starting at time 0 in state 1,500, the asymptotic value of the call option 
expectation with 1,500 as the exercise price is 46 and the call value is 45.315. 

 
The following table gives option expectations and option values with different 

exercise prices. 
 

Exercise price Option expectation Option value 

1,350 178.78 176.119 

1,400 129.234 127.308 

1,450 83.8638 82.614 

1,500 46.0002 45.315 

1,550 15.8126 15.577 

1,600 4.74378 4.673 

1,650 0 0 

Table 15.6. Semi-Markov option calculation 
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15.3.7. Conclusion 

The JMD models presented here provide a semi-Markov approach for the pricing 
of option financial products working in discrete time and with a finite number of 
possible values for the imbedded asset, which is always the case from the numerical 
point of view. 

 
The main interest of these models is that they work even when there are 

possibilities of arbitrage, that is to say, for the most common cases. Of course, one 
of the main difficulties in applying this model is the fitting of the needed data and 
this is only of interest in the case of asymmetric information so that the economic 
agent can believe in his own information, knowing that he will always be in a risky 
situation to expect gain but still worried about the possibility of losing as in the case 
of a real life situation! 

 
It is also important to point out that the numerical examples are coherent; 

nevertheless, there are significant differences according to the model used, Markov 
or semi-Markov, so that it is very important to select the most concrete one.  


